119. Five-covalent Terpyridyl Complexes of Bivalent Metals. Part I. The Stereochemistry of the Zinc, Cadmium, and Copper Compounds.

By D. E. C. Corbridge and E. G. Cox.

The structure of terpyridylzinc chloride has been investigated by threedimensional X-ray analysis in sufficient detail to determine its main stereochemical features. The lattice is molecular, the zinc atom in each Zn (terpy) Cl_{2} molecule being linked in a distorted trigonal bipyramid to five atoms, three nitrogens at $2 \cdot 2 \AA$ and two chlorines at $2 \cdot 29 \AA$. The distortion consists chiefly in a deflection of the two axial bonds of the bipyramid to accommodate the terpyridyl molecule, the external bonds of which are also deflected. These deflections are all in the plane of the terpyridyl molecule, which remains flat; thus, approximately the complex has two planes of symmetry intersecting in a two-fold axis which passes through the zinc atom and bisects both the central pyridine ring and the ClZnCl angle.

The corresponding cadmium and copper compounds are isomorphous with the zinc compound and although they have not been investigated in such detail there is no doubt that their structures are essentially the same. The copper compound contains two molecules of water of crystallisation accommodated apparently in holes in the structure which remain empty (and are possibly smaller) in the anhydrous zinc and cadmium lattices.
Morgan and Burstall ($J ., 1937,1649$) prepared a number of compounds of the type M (terpy) X_{2} where $\mathrm{M}=\mathrm{Ag}, \mathrm{Cu}, \mathrm{Pd}, \mathrm{Pt}, \mathrm{Zn}, \mathrm{Cd}$, and Hg , terpy $=$ ter-2-pyridyl, and X is a univalent anion. The copper, palladium, and platinum chlorides were hydrated and might conceivably therefore contain octahedral complexes, but the others were anhydrous and were formulated tentatively by Morgan and Burstall as [M (terpy) X$] \mathrm{X}$ which suggests a planar distribution of four valencies around M since the terpyridyl could hardly be distorted enough to span three tetrahedral positions. However, there were clearly several other possibilities to consider such as a tetrahedral configuration involving only two nitrogen atoms of the terpyridyl molecule, and these could best be discriminated by X-ray analysis, since the insoluble nature of the compounds made it difficult to investigate their properties in solution. We have now examined a large number of metal terpyridyl compounds by means of X-rays and the present paper gives the stereochemical results for $\mathrm{Zn}(\operatorname{terpy}) \mathrm{Cl}_{2}$ and the corresponding cadmium and copper compounds, which we find to be five-coordinated molecular complexes.

The crystallographic constants for these and for two iodides are given in Table l, from
Table 1. Crystallographic data for compounds $\mathbf{M X}_{2}$ (terpy).

which it will be seen that the zinc and the cadmium compound are isodimorphous, and that notwithstanding the presence of two molecules of water of crystallisation, the copper compound appears to be isomorphous with the second form of the anhydrous zinc and cadmium compounds.

These results suggest very strongly that the compounds are monomeric with four molecules of \mathbf{M} (terpy) \mathbf{X}_{2} per unit cell. An arrangement of two molecules of $\left[\mathbf{M}(\text { terpy }) \mathbf{X}_{2}\right]_{2}$ per unit cell
is not permitted by the symmetry of the space-groups $I a$ and $I 2 / a$ and while it would be possible in the space-group $P 2_{1} / a$ the similarity of cell dimensions and the easy interconvertibility by recrystallisation of forms I and II suggest that they are simple isomorphs of the same molecular structure differing only in the manner of packing in the crystals. The molecules being assumed to be monomeric, the space-group symmetry does not however discriminate between molecules $\left[M(\right.$ terpy $\left.) \mathrm{X}_{2}\right]$, salts $[\mathrm{M}($ terpy $) \mathrm{X}] \mathrm{X}$, and continuous structures $\left[\mathrm{M} \text { (terpy) } \mathrm{X}_{2}\right]_{\infty}$ in which the metal atoms achieve octahedral co-ordination by sharing X atoms. If the space-group of form I is $I 2 / a$ the metal atoms must lie on two-fold axes, and this would exclude continuous structures and also structures in which only two of the three terpyridyl nitrogen atoms were co-ordinated to the metal: in spite of the absence of pyroelectric effects in the liquid-air test, form I may however have the lower symmetry $I a$ in which case no symmetry requirements are imposed in the molecule by the space-group.

After a preliminary survey of the problem we decided to carry out a structure analysis on form II of Zn (terpy) Cl_{2} using data from the isomorphous $\mathrm{Cd}($ terpy $) \mathrm{Cl}_{2}$ to resolve ambiguities where necessary. The intensities of $1934 h k l$ reflections from the zinc compound were estimated visually and another 561 which should have been observed were recorded as too small to measure; about 850 of the strongest reflections were used to carry out the analysis described below. About 150 h 0 l intensities from the cadmium compound were measured. The structure amplitudes were calculated in the usual way and Patterson projections for the $h 0 l$ zones were obtained (Figs. 1 and 2); that for the cadmium compound is probably less accurate because of higher absorption and because fewer terms were used in the synthesis (152 as against 186 for the zinc compound). The large peaks A corresponding to the metal-metal vectors were readily identifiable in these projections, and the coordinates of one of the chlorine atoms were found by noting that the three peaks A, B, and C were nearly equally spaced in a straight line and were of descending order of magnitude as would be expected for $\mathrm{Zn}-\mathrm{Zn}, \mathrm{Zn}-\mathrm{Cl}_{I}$ and $\mathrm{Cl}_{I}-\mathrm{Cl}_{I}$ vectors. The position of the second chlorine atom could not at first be recognised and it was assumed that the $\mathrm{Zn}-\mathrm{Cl}_{\text {Il }}$ peak fell too close to the $\mathrm{Zn}-\mathrm{Zn}$ peak A to be resolved; this was later found to be the case, and in the $h 0 l$ Patterson projection for the copper compound (Fig. 3) the resolution is sufficient to separate the peaks so that another equally spaced linear triad $A D E$ can be recognised corresponding to the $\mathrm{Cu}-\mathrm{Cu}, \mathrm{Cu}-\mathrm{Cl}_{\text {II }}$, and $\mathrm{Cl}_{\text {II }}-\mathrm{Cl}_{\text {II }}$ vectors.

Assuming that the terpyridyl molecule lay on the side of the zinc atom remote from Cl_{I}, we were able to show by means of models that the x and z co-ordinates for $\mathrm{Zn}(0.12,0 \cdot 22)$ and $\mathrm{Cl}_{\mathrm{I}}(0.24,0 \cdot 14)$ were compatible with various reasonable arrangements of the molecules in the crystal lattice. We therefore calculated a Fourier synthesis with 63 h 0 l terms, allocating signs to the coefficients determined by the zinc and chlorine contributions, and assuming $\mathrm{Cl}_{\mathrm{II}}$ to have approximately the same (x, z) co-ordinates as Zn . The map of this synthesis showed Zn and Cl_{I} in almost the same positions as had been deduced from the Patterson synthesis, but $\mathrm{Cl}_{\text {II }}$ was clearly resolved with co-ordinates ($0 \cdot 13,0.35$) which thus gave rise in the Patterson synthesis to a $\mathrm{Zn}-\mathrm{Cl}_{\mathrm{II}}$ peak coinciding, not with the $\mathrm{Zn}-\mathrm{Zn}$ peak A, but with the symmetrically related $\mathrm{Zn}-\mathrm{Zn}$ peak A^{\prime}. With this information it was found possible to account for nearly all the main features of the Patterson syntheses. The (x, z) co-ordinates of the three heavy atoms were next determined more accurately by means of a Harker $P\left(x \frac{1}{2} z\right)$ synthesis of about 800 hkl terms and this synthesis also showed a weak $\mathrm{Zn}-\mathrm{Cl}_{I}$ peak, indicating that Zn and Cl_{I} had approximately the same y co-ordinates. This result showed that Zn and Cl_{I} were about $2 \cdot 3 \AA$ apart and therefore bonded together, and it also showed that the structure could not consist of chains of octahedral complexes since the only way of achieving this would be through linking $\mathrm{Cl}_{\text {II }}$ atoms along the b-axis, and the distance between successive zinc atoms in this direction is much too great for such binding.

In order to carry the analysis further, a comparison of corresponding $h 0 l$ intensities for the zinc and cadmium compounds was made and the signs of a few structure factors were determined in this way, but the method was not pursued because (a) the high absorption factor ($160 \mathrm{~cm} .^{-1}$) for the cadmium compound reduced the accuracy of the intensity measurements and (b) the Patterson syntheses showed that the assumption that the atomic positions were exactly the same in the two substances was not strictly valid. Attempts to determine signs by means of Harker-Kasper inequalities (Acta Cryst., 1948, 1, 70) were not successful,
but successive synthesis and recalculation of structure factors enabled us to obtain a hol projection of 180 terms in which two of the three pyridine rings were resolved, the third being obscured by the corresponding centrosymmetrically related ring of another molecule (Fig. 4).

The y co-ordinates were determined by Patterson three-dimensional line syntheses,

$h k 0$ Patterson and Fourier projections, and finally by a section projection (Booth, Trans. Faraday Soc., 1945, 41, 434) between $z=0$ and $z=\frac{1}{2}$. At this stage it was clear that the molecule had a somewhat distorted trigonal bipyramidal structure which would not be fully resolved in any projection, and the final co-ordinates were therefore determined by means of a series of three-dimensional Fourier sections and lines. The first stage consisted in determining the signs of about $850 h k l$ structure factors; in many cases these were determined by the contributions of the heavy atoms, but where necessary the contributions
of the carbon and nitrogen atoms were calculated. The electron density was then calculated over seven sections of the unit cell from $y=1 / 30$ to $y=7 / 30$, the calculation in each section extending from $x=0$ to $x=1$ and $z=0$ to $z=1$ at intervals of $1 / 60$ in both

directions. The summations were carried out by Hollerith methods (Cox and Jeffrey, Acta Cryst., 1949, 2, 65; Greenhalgh, Proc. Leeds Phil. Soc., 1950, 5, 301) and occupied about 12 days. A composite map of the result is shown in Fig. 5. The y-co-ordinates were found by calculating the electron densities along lines parallel to the b-axis and passing through the maxima in the (x, z) maps. The results (in thousanths of the cell edges) are given in Table 2, and the bond lengths and bond angles around the zinc atom in Table 3.

Table 2. Atomic co-ordinates in ZnCl_{2} (terpy).

	x	y	z		x	y	z
Zn	118	097	217	C_{8}	827	000	261
Cl_{1}	239	027	135	C_{9}	858	093	170
Cl_{11}	133	323	334	C_{10}	935	107	155
				C_{11}	971	186	050
C_{1}	186	844	405	C_{12}	925	263	969
C_{2}	184	760	523	C_{13}	950	366	874
C_{3}	108	707	536	C_{14}	033	377	880
C_{4}	025	767	473	C_{15}	077	293	975
C_{5}	040	850	386	N_{1}	124	900	350
C_{6}	966	917	325	N_{2}	994	030	236
C_{7}.	889	913	350	N_{3}	051	203	057

Table 3. Bond lengths (\AA) and bond angles.

$\mathrm{Zn}-\mathrm{Cl}_{\mathrm{I}} \ldots \ldots$	$2 \cdot 28_{3}$	$\mathrm{Zn}-\mathrm{N}_{2}$	$\ldots .$.	$2 \cdot 11$	$\mathrm{Cl}_{1} \mathrm{ZnCl}_{\mathrm{II}} \ldots$	111°	$\mathrm{N}_{2} \mathrm{ZnN}_{3} \ldots$	72°
$\mathrm{Zn}^{\circ} \mathrm{Cl}_{\mathrm{I}} \ldots \ldots$	$2 \cdot 29_{5}$	$\mathrm{Zn}-\mathrm{N}_{3}$	$\ldots \ldots$	$2 \cdot 34$	$\mathrm{~N}_{1} \mathrm{ZnN}_{2} \ldots$	79	$\mathrm{~N}_{1,3} \mathrm{ZnCl} \ldots$	100 (average)
$\mathrm{Zn}-\mathrm{N}_{1} \ldots \ldots$	$2 \cdot 19$							

Since the primary object in determining the structure was to elucidate the stereochemistry of the metal atom, the analysis has not yet been carried far enough to enable standard deviations of bond lengths to be calculated, but from the variations of the co-

Fig. 5.
Zn (terpy) Cl_{2}; composite threedimensional Fourier diagram.
ordinates during the later stages it seems reasonable to assign approximate probable errors of $\pm 0.03 \AA$ and $\pm 0 \cdot 1 \AA$ to the mean $\mathrm{Zn}-\mathrm{Cl}$ and $\mathrm{Zn}-\mathrm{N}$ distances respectively, and $\pm 2^{\circ}$ to the ClZnCl angle. (It should be noted that the analysis of this stage does not distinguish with certainty between carbon and nitrogen atoms; the three atoms of the terpyridyl molecule bonded to zinc can, however, be assumed to be nitrogen and not carbon.) A list of observed and calculated structure factors is given in Table 4; the reliability factor R is about 25%.

The structure of one molecule is shown in Fig. 6, and the arrangement of the molecules in the lattice in Fig. 7. The bond lengths and the general arrangement of the molecules show quite clearly that the molecule is a five-co-ordinated complex and that there is no possibility of either polymerisation or ionisation (this does not of course exclude the possibility of the $\mathrm{Zn}-\mathrm{Cl}$ bonds' having some ionic character, although their length, $2 \cdot 29 \AA$, is almost exactly what would be expected for covalent bonds). The terpyridyl molecule is flat within experimental error and lies in a plane approximately at right angles to the plane of the $\mathrm{Zn}-\mathrm{Cl}$ bonds; thus approximately the complex has two planes of symmetry intersecting in a two-fold axis which bisects the ClZnCl angle and the central pyridine ring. The
configuration of the five bonds to the zinc atom is that of a distorted trigonal bipyramid; the two axial bonds are deflected from the ideal position to accommodate the terpyridyl molecule, and the deflection appears to be shared between the zinc and the terpyridyl since, as can be seen from Figs. 5 and 6, neither the two outer N-Zn bonds nor the two pyridinepyridine bonds are in line with the corresponding ring diameters, all having been deflected inwards. This is understandable, but there seems to be no obvious explanation at present for the significant deviation of the ClZnCl angle from 120°; nevertheless, the configuration is much closer to a trigonal bipyramid than to any other recognised arrangement, and in particular it is certainly not that of a tetragonal pyramid.

The intermolecular distances are normal and do not call for any special comment except to note that neither the zinc nor the chlorine atoms have any atoms in other molecules near

Fig. 6. Zn (terpy) Cl_{2}; bond lengths and bond angles.

Fig. 7. $\quad \mathrm{Zn}$ (terpy) Cl_{2}; arrangement of molecules in the lattice.

enough to suggest anything but van der Waals forces between them; the nearest neighbour to zinc is a carbon atom at $4 \cdot 1 \AA$ and the shortest Cl . . . Cl distance is $5 \cdot 1 \AA$. The packing of the molecules is good except along the a-axis where there are some gaps the projected positions of which are shown approximately at X in Fig. 7.

No detailed analysis has been made of the cadmium compound, but the similarity of the Patterson projection (Fig. 2) to that of the zinc compound (Fig. 1) leaves no doubt that its structure is essentially the same. The same conclusion could be drawn with regard to the copper compound (Fig. 3) but because of its rather different properties (higher solubility, reaction for chloride ion, water of crystallisation), and because the stereochemistry of copper does not normally show much resemblance to that of zinc, we have carried the analysis further. Proceeding in the same way as with the zinc compound, we have made $h 0 l$ and $h k 0$ Fourier projections; comparison of the $h 0 l$ projection with that for the zinc compound at about the same stage of the analysis (Fig. 4) leaves no doubt as to the very close similarity of their structures. The approximate co-ordinates derived from these projections, and the bond distances and angles calculated from them, are only slightly different from the corresponding figures for the zinc compound. The analysis has not yet been

Table 4. Observed and calculated structure factors for $\mathrm{Zn}($ terpy $) \mathrm{Cl}_{2}$.
Note: These figures are on one-quarter of the absolute scale. Calculations were made with the f values given in the International Tables, with a temperature factor $B=\mathbf{1} \cdot \mathbf{0}$.

$k k l$	F (obs.)	F (calc.)	$h k l$	F (obs.)	F (calc.)	$h k l$	F (obs.)	F (calc.)	$h k l$	F (obs.)	F (calc.)
200	22	29	809	14	21	$\overline{6} 06$	21	-20	1020	0	-1
400	29	-27	1001	37	-33	$\overline{6} 07$	9	-11	1220	7	4
600	14	-9	1002	11	-6	608	17	17	1420	5	-3
800	31	27	1003	14	9	$\overline{6} 09$	3	11	1620	4	4
1000	8	-6	1004	24	26	6010	10	-14	1820	4	7
1200	18	-18	1005	16	13	$\overline{801}$	19	-13	240	13	-11
1400	14	-14	1006	~ 10	-13	$\overline{8} 02$	46	-42	440	28	23
1600	16	16	1007	10	-12	$\overline{8} 03$	7	4	640	3	-1
1800	3	1	1008	12	12	$\overline{8} 04$	7	4	840	9	-10
2000	7	-8	1009	3	-4	805	12	4	1040	6	-2
			1201	7	8	806	7	6	1240	19	22
001	8	10	1202	10	11	807	14	-12	1440	3	3
002	24	-20	1203	4	6	808	0	-2	1640	7	-4
003	15	-10	1204	13	14	$\overline{8} 09$	17	22	1840	4	4
004	6	-4	1205	9	-11	8010	- 10	-11	260	8	-7
005	11	8	1206	5	-13	10001	20	14	460	13	14
006	17	12	1207	16	21	1002	0	0	660	5	4
007	20	17	1208	2	6	$\underline{1} 003$	10	-13	860	6	-5
008	3	0	1401	19	17	$\overline{1} \overline{0} 04$	8	- 9	1060	6	-9
009	19	18	1402	5	-2	$\overline{1} 005$	4	8	1260	5	8
0010	5	-10	1403	0	-1	İ006	0	-4	1460	4	4
0011	14	-20	1404	0	2	$\overline{1} 007$		-9	280	0	-1
0012	4	-8	1405	4	4	$\overline{1} 008$	10	-16	480	5	4
020	0	2	1406	11	22	\bigcirc	10	10	*110	3	35
${ }_{040}$	14	-12	1407	5 9	3 -15	$\overline{1} 0010$	8	14	310	18	-15
060	7	-6	1408	9	-15	$\underline{1} 201$	6 14	3 14	510	2 9	-5
080	0	2	1601	7	9	1 $\overline{1} 202$	14	14 -13	710	9	5 17
0100	10	12	1602 1603	0 5	5 -4	$\underline{1}$	14	-13	910 1110	24 8	17 -6
201	27	-21	1604	9	-8	$\overline{1} \mathbf{2} 05$		1	1310	6	-6
202	17	13	1605	6	9	1206	7	8	1510	5	-6
203	23	23	1606	3	7	1207	13	16	1710	13	13
204	13	12	1607	8	-13	I208	2	9	130	13	4
205	1	4	1801	10	-12	$1 \overline{1}_{2} 09$	11	-21	330	9	-8
206	26	-22	1802	10	-10	$\overline{1} 2010$	- 6	-5	530	2	0
207	12	-9	1803	2	-6	$\overline{1} 401$	14	-11	730	7	3
208	18	13	1804	7	11	1702	9	7	930	9	5
209	5	7	1805	7	10	$1{ }^{1} 03$	16	18	1130	5	-6
2010	14	-15	1806	9	-11	$1 \overline{4} 04$	0	-2	1330	11	11
401	19	15	2001	2	2	$1 \overline{4} 05$	8	-3	1530	0	-
402	23	24	2002	2	-2	$\overline{1} 406$	12	-11	1730	0	-
403	13	-4	2003	2	4	$1 \overline{4} 0.7$	0	4	150	21	-17
404	18	-12	201	37	43	1408	9	6	350	22	19
405	40	-31	$\overline{2} 02$	3	2	$1 \overline{4} 09$	0	2	550	30	30
406	18	-10	$\overline{2} 03$	0	-1	14010	- 6	-11	750	13	-13
407	29	-27	$\overline{2} 04$	8	7	$\overline{1} 601$	10	-8	950	16	-16
408	11	14	$\overline{2} 05$	5	3	$\overline{1} 602$	22	-27	1150	4	6
409	17	-17	$\overline{2} 06$	24	19	$\overline{1} \overline{6} 03$	4	-3	1350	11	11
4010	3	3	$\overline{2} 07$	17	-12	$\overline{1} \mathbf{6} 04$	10	11	1550	8	-12
601	13	8	$\overline{2} 08$	24	-23	$\overline{1} \mathbf{1} 05$	5	7	1750	4	-5
602	9	-4	$\overline{2} 09$	0	-6	$\overline{1} \overline{6} 06$	3	-3	170	8	-7
603	26	-16	2010	12	19	1607	2	1	370	0	-1
604	13	7	401	16	13	$\underline{1608}$	0	-3	570	7	4
605	8	-1	$\overline{4} 02$	25	29	$\overline{1} \overline{6} 09$	5	9	770	6	-6
606	14	11	$\overline{4} 03$	25	-16	$\overline{1} 01$	12	13	970	4	-3
607	0	0	$\overline{4} 04$	20	-20	$\overline{1} 802$	3	-7	1170	6	7
608	22	-24	405	11	-7	1803	6	-8	1370	7	9
609	4	-8	$\overline{4} 06$	0	-2	1804	0	10	190	5	7
6010	14	18	407	21	23	$\overline{2} 0{ }^{0} 01$	7	-1	380	6	-10
801	12	8	408	7	9	$\overline{2} 002$	8	8	590	7	7
802	18	-12	$\overline{4} 09$	~ 10	-15	2003	5	-11	210	13	-12
803	13	-14	4010	5	-9	$\overline{2} 004$	8	-10	410	2	-1
804	3	-4	601	45	-45				610	28	26
805	11	7	602	3	0	220	24	-18	810	8	5
806	10	7	603	35	32	420	14	8	1010	18	-15
807	19	-19	604	8	5	620	5	-6	1210	3	7
808	0	1	605	5	-6	820	22	15	1410	8	6

* This discrepancy is not understood; it may in part be due to extinction.

Table 4. (Continued.)
hkl F 1810 230 430
630
830
1030
1230
1430
1630
250
450
650
850
1050
1250
1450
1650
270
470
$\begin{array}{r}670 \\ 870 \\ \hline\end{array}$
1070
1270
290
490
690
120
320
520
720
920
1120
1320
1520
1720
140
$\mathbf{3 4 0}$
540
$\mathbf{7 4 0}$
940
1140
1340
1340
1540
160
360
560
760
$\mathbf{9 6 0}$
1160
180
380
580
760
021
022
023
023
025
027
028
029
042
043
044
045
046
047
F (obs.) F (calc.)

049 F
(obs.) F (calc.)
$12-10$

602 Five-covalent Terpyridyl Complexes of Bivalent Metals. Part I.

carried far enough to locate the water molecules, which have a comparatively small effect on the intensities, but no evidence has been found contrary to the view that they occupy the cavities X (Fig. 7). It is reasonably certain that they cannot in any case be co-ordinated to the copper atom since the disposition of the two chlorine atoms and the terpyridyl molecule in a trigonal bipyramid around the central atom would prevent the water from coming closer than $3 \frac{1}{2}-4 \AA$ to the latter. It is proposed to make a more detailed analysis to determine the bond lengths accurately, and in the course of this work it is hoped to locate the water molecules with certainty.

The trigonal bipyramidal arrangement of $d s p^{3}$ bonds was predicted by Kimball (J. Chem. Phys., 1940, 8, 188) and is known to occur in a small number of compounds, but this appears to be the first example of this configuration for zinc, copper, or cadmium or involving a chelate group. On the other hand Daudel and Bucher (J. Chim. phys., 1945, 42, 6) have suggested that when the d orbitals involved in hybridisation have a lower principal quantum number than the s and p orbitals (as in $\mathrm{Ni}^{\text {II }}$ and perhaps $\mathrm{Cu}^{\mathrm{II}}$) the configuration should be that of a tetragonal pyramid (with the central atom in the plane of the base and not above it as suggested by Kimball for $d^{2} s p^{2}$ hybridisation), and Jensen and Nygaard (Acta Chem. Scand., $1949,3,474$) have shown that the compound $\mathrm{NiBr}_{3}, 2 \mathrm{PEt}_{3}$ almost certainly has this configuration. In our case it is to be expected that the zinc orbitals involved in binding will all be in the fourth quantum group, so that the conditions postulated by Daudel and Bucher do not apply and our results are in agreement with Kimball's theory. The case of the cadmium compound is precisely analogous.

It should be possible for cupric complexes to exist with the tetragonal pyramidal configuration corresponding to $3 d 4 s 4 p^{3}$ hybridisation (although the fifth bond might be weak) and there is some evidence for the existence of the ion $\left[\mathrm{Cu}(\mathrm{en})_{2} \mathrm{NH}_{3}\right)^{++}$which might be expected to have this structure. If, however, Daudel and Bucher's theory is accepted, our finding that $\mathrm{Cu}($ terpy $) \mathrm{Cl}_{2}$ is trigonal bipyramidal indicates that the hybridisation in this case is $4 d 4 s 4 p^{3}$. The nature of the ligands no doubt has considerable influence, but it cannot be argued that the terpyridyl molecule has a " straight-jacket " effect since three bonds suitably disposed to co-ordinate with the three nitrogen atoms are available equally with either a trigonal or a tetragonal configuration of the central atom. It is possible that the energy difference between the two configurations is in many cases not very great, and precise identification of the factors which determine the configuration actually adopted in various circumstances can therefore probably not be made on the data available at present.

A detailed account of the stucture of terpyridylcopper chloride and also an account of the crystallography of a number of other polypyridyl complexes will be published later.

Experimental

The zinc and cadmium compounds were supplied by the late Sir Gilbert Morgan and (the late) Dr. F. H. Burstall. The copper compound was prepared by Morgan and Burstall's method (loc.cit.).

Terpyridylzinc chloride was obtained from aqueous solutions in two crystalline forms, both monoclinic and both pale greenish-yellow, which were readily interconvertible by crystallisation. Crystals of form I were acicular combinations of $\{110\}$ and $\{011\}$ elongated parallel to [c] and those of form II were prismatic combinations of $\{110\},\{100\},\{001\}$ and $\{20 \overline{1}\}$ also elongated parallel to [c]. Both forms were diamagnetic and did not show pyroelectricity when tested in liquid air.

Terpyridylcadmium chloride had a darker colour than the zinc compound, and had a higher density (Table 1) but otherwise resembled it closely in every respect.

Terpyridylcupric chloride dihydrate was obtained as bluish-green prisms which were very similar to form II of the zinc and the cadmium compound. Recrystallisation did not yield any other type of crystal. The crystals were paramagnetic.

Terpyridylzinc bromide and iodide were only very slightly soluble. A few small needles of form I were obtained by slow evaporation of aqueous solutions over a period of many weeks. No crystals of form II were obtained.

All X-ray photographs were taken with copper K_{α} radiation. The cell dimensions were determined by means of rotation and Weissenberg photographs and the intensity measurements were made by visual estimation on Weissenberg photographs. Three films were used for each
photograph, which was taken twice with exposures of 4 hr . and 32 hr . so that a set of six films was obtained for each crystal setting, covering a wide range of intensities. Developing, fixing, and washing of the films was done under controlled conditions. Visual estimation of the intensities was controlled by sets of calibration spots obtained from the actual crystals being examined. No corrections for absorption of X-rays in the crystal were made ($\mu=56 \mathrm{~cm} .^{-1}$ for the zinc compound) but errors were minimised by using equant crystals of appropriate size (about 0.3 mm .). The intensities were measured on an arbitrary scale, and the structure amplitudes calculated from them in the usual way and at a later stage put on the proper scale by comparison with calculated structure amplitudes.

We express our gratitude to (the late) Dr. F. H. Burstall for gifts of material, to (the late) Dr. J. S. Jennings and Mr. A. J. Shorter, who made some preliminary measurements in 1938-1939, and to Mr. D. M. S. Greenhalgh and Miss B. Long for assistance with the calculations. We acknowledge a D.S.I.R. maintenance award and a Senior Ellison Fellowship held by one of us (D. E. C. C.) and the provision of apparatus by the Royal Society and Imperial Chemical Industries Limited.

Department of Inorganic and Structural Chemistry,
University of Leeds.

